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Abstract: The ECG (Electrocardiogram) signal represents electrical activity of heart and is
recorded for monitoring and diagnostic purpose. These signals are corrupted by artifacts during
acquisition and transmission predominantly by high frequency noise due to power line interference,
electrode movements, etc. Addition of these noise change the amplitude and shape of the ECG signal
which affect accurate analysis and hence need to be removed for better clinical evaluation. In this
paper, ECG signal taken from MIT -BIH database is first denoised using Total Variation Denois-
ing (TVD); using Majorization minimization (MM) optimization technique. ECG signals generate
massive volume of digital data, so they need to be suitably compressed for efficient transmission
and storage. Hence, for efficient compression the signal is segmented into various sections using
Bottom-Up approach. The individual sections are then approximated using Chebyshev polynomials
of suitable orders. The performance of the approximation technique is measured by computing the
Maximum Absolute Error, the Compression Ratio, Root Mean Square Error, Percent Root Mean
Square Difference and Percent Root Mean Square Difference Normalized. The results are also
compared with other techniques as reported in the literature, where significant improvements in all
the performance metrics are observed.

Keywords: ECG signal, total variation denoising, majorization-minorization, bottom-up, Cheby-
shev nodes, Chebyshev approximation

1. Introduction

The electrocardiogram (ECG) describes the electrical activity of the heart. It conveys information
about structure of the heart and functions of its electrical conduction (Walraven, 2011). It is
obtained as voltage variations by placing electrodes at specific positions on the chest, arms and legs.
The ECG is characterized by a series of waves whose morphology and timing provide clinically useful
information. The time pattern that characterizes the occurrence of successive heartbeats is also
very important. The ECG signals are used to monitor drug and to detect metabolic disturbances.
A systematic interpretation of the ECG signals prevents overlooking of important abnormalities
of cardiac system like rhythm of heartbeats, size and position of chambers and the presence of
any damage to the heart’s muscle cells or conduction system, the effects of cardiac drugs, and the
function of implanted pacemakers (Braunwald, 1997).

A single normal cycle of the ECG represents the successive atria depolarization/repolarisation
and ventricular depolarization /repolarisation which occur with every heartbeat (Acharya et. al,
2007). These can be approximately associated with the peaks and troughs of the ECG waveform
labelled P, Q, R, S, and T as shown in Figure 1.
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Figure 1. ECG Signal and its various waves.

The first step in the design of an ECG system involves understanding the nature of the signal
that needs to be acquired. The ECG signal consists of low amplitude voltages in the presence of
high offsets and noise. The common electrode used in ECG systems has a maximum offset voltage
of 300mV. The actual desired signal is 0.5mV superimposed on the electrode offset. ECG Signal
processing is a huge challenge since the actual signal value will be 0.5mV in an offset environment of
300mV. Other factors like AC power-supply interference, RF interference, electrode movement from
surgery equipment, and implanted devices like pace makers and physiological monitoring systems
can also impact accuracy (Bharadwaj and Kamath, 2011).

The amount of data involved in storage and transmission of digital ECG signals is quite large.
So it needs to be adequately compressed in a way so that it can be accurately reconstructed. The
ECG compression techniques are broadly classified as: direct methods, transform-based methods
and parameter extraction methods (Jalaleddine et. al, 1990). In direct methods, the original ECG
signal samples are compressed directly, and in transformation method the original samples are first
transformed and then compressed. In parameter extraction methods, the features of the processed
signal are extracted and then these features are used for the reconstruction of the signal (Jalaleddine
et. al, 1990).

Various time domain compression algorithms like FAN, AZTEC, CORTES and SAPA etc can
be found in the literature. These methods are based on the idea of extracting few significant signal
samples to represent the signal and then decoding the same set of samples. These techniques
are based on heuristics in the sample selection process. This makes them faster but suffer from
suboptimality (Zahhad, 2011).

Several compression algorithms including polynomial approximations and polynomial interpola-
tion have been proposed for ECG data compression. The advantage of polynomial approximation
is that it requires only polynomial coefficient describing the data signal and is able to approximate
the original ECG signal quite efficiently.
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Polynomials of maximum degree 3, including spline functions have been proposed for ECG
interpolation in (Karczewicz and Gabbouj, 1997). The representation of ECG signals using second
degree quadratic polynomials is studied by Nygaard et al in (Nygaard et. al, 1999). High degree
Legendre polynomials were used for ECG data compression (Philips, 1993; Colomer and Colomer,
1997; Tchiotsop et. al, 2007). Although Chebychev polynomials are widely used in mathematical
interpolation and approximation, ECG signal compression through Chebychev polynomials are
hardly found in the literature. In (Tchiotsop et. al, 2007) ECG data compression is done using
Discrete Chebyshev Transform by segmenting the signal into blocks which consist of multiple cardiac
cycles.

These methods are mainly focused on approximation of the entire ECG beat without paying
attention to the importance of the intervals of the signal which is the case for vital signals. The
signal is often broken into segments within which the signals can be considered stationary. In this
way, each part can be analyzed or processed separately.

In this paper, we propose a computationally efficient method to model ECG signals through
Chebyshev polynomials. The ECG signal contains an important noise component so a preprocess-
ing is applied before the segmentation effectively takes place. The ECG signal is first denoised
using Total Variation Denoising using Minimization-Majorization (TVD-MM) technique. In order
to have a better compression ratio we must have a lower order of the polynomial. So, the denoised
signal is then segmented into segments using Bottom-Up approach. Next, we model each segment
independently using Chebyshev interpolation and combine them to reconstruct the complete signal.

The rest part of the paper is organized as follows: in section 2, we present the computational
performance metrics to be applied to measure the efficiency of the method. In section 3 and 4,
we give a brief introduction to Chebychev polynomials and Chebyshev interpolation. In section 5,
we describe the proposed method along with the algorithm to achieve ECG data compression. In
section 6, we present the implementation of our method on the ECG signals using the MIT-BIH
arrhythmia database and discuss the results obtained. In the last section we give the conclusions
regarding the presented approach.

2. Evaluation of Compression Method

Let N be the total number of the ECG samples and p(xi) and f(xi) represent the samples in
original and reconstructed signal. In most ECG compression algorithms, the various performance
metrics are as:

Root Mean Square Error (RMSE): is the average of the square of the errors (Sormno and
Laguna, 2006)

RMSE =

√∑N
i=1(p(xi)− f(xi))2

N
(1)

Maximum Error (Maxerror): is the maximum error (Hadjileontiadis, 2006)

MaxError = max
N

(|(p(xi)− f(xi))|) (2)
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Compression Ratio (CR): is defined as the ratio between the number of bits needed to represent
the original and the compressed signal (Zahhad et. al, 2010). We can also define it as the ratio
between the number of samples needed to represent the original and the compressed signal.

CR =
N

n
(3)

where n is the order of the interpolating polynomial
Percent Root Mean Square Difference (PRD): is the measure of acceptable fidelity (Zahhad et.

al, 2010)

PRD% = 100

√∑N
i=1(p(xi)− f(xi))2∑N

i=1 p(xi)
2

(4)

Percent Root Mean Square Difference Normalized (PRDN): is the normalized version of PRD
(Fira and Goras, 2008) and depends on the signal mean value pm

PRDN% = 100

√∑N
i=1(p(xi)− f(xi))2∑N
i=1(p(xi)− pm)2

(5)

3. Chebyshev polynomials

The Chebyshev polynomials (Gil et. al, 2007) of first type and degree n are defined in terms of
trignometric cosine function as:

Tn(x) = cos(n cos−1(x)) for n ≥ 0 (6)

The expressions for Chebyshev polynomials are obtained from the recursive relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1 (7)

The Chebyshev polynomials of degree n, Tn(x), has n+ 1 zeros in the interval [-1, 1], which can
be calculated as

xj = cos

(
2j + 1

2n+ 1
π

)
, 0 ≤ j ≤ n (8)

The roots of the Chebyshev polynomial are also known as Chebyshev points or nodes. In the
same interval the n+ 1 extrema of the polynomial Tn(x) are located at

x̃j = cos

(
πj

n

)
, 0 ≤ j ≤ n (9)
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At all the maxima Tn(x) = 1, while at all the minima Tn(x) = −1. The Chebyshev polynomials

are orthogonal in the interval [−1, 1] over the weight w(x) =
(
1− x2

)−1/2
. They also satisfy discrete

orthogonality relationships. Other properties of Chebyshev polynomials can be found in (Szego,
1975).

4. Polynomial Approximation using Interpolation

A polynomial approximation problem is of finding a polynomial close to a given function and has
the freedom to select the significant points. Once the significant points have been fixed, it is reduced
to an interpolation problem that can be solved by polynomial interpolation (Birkhoff and Boor,
1965). Let p(x) represent ECG segment vector of length N consisting of samples of p(xi) such that

p(x) = {p(x0), p(x1), ..., p(xN )} , x ∈ [a, b]

Given a set of N + 1 data points (xi, p(xi)) we want to construct a polynomial f of degree N
with the property

f(xi) ≈ p(xi), i = 0, 1, ...N

Suppose the interpolation polynomial is in the form

f(x) = aNx
N + aN−1x

N−1 + ...+ a2x
2 + a1x+ a0, x ∈ [a, b] (10)

which means that

f(xi) ≈ p(xi)∀i ∈ {0, 1, ...N} (11)

Substituting Eq.(11) in Eq.(10) we get a system of linear equations which in matrix form reads
xN0 xN−10 · · · x0 1

xN1 xN−11 · · · x1 1
...

...
...

...

xNN xN−1N · · · xN 1



aN
aN−1
...
a0

 =


p(x0)
p(x1)
...
p(xN )

 (12)

The matrix on the extreme left is the Vandermonde’s matrix. The system given by Eq.(12) would
have a unique solution if the determinant of the Vandermonde matrix does not vanish (Bjorck and
Pereyra, 1970). Solving this system for ak we can construct the interpolating polynomial f(x).

Alternatively we can write the required polynomial explicitly using Lagrange’s formula (Yang
et. al , 2005; Chan et al, 2001) as

f(x) =

N∑
i=0

f(xi)

N∏
j=0
j 6=i

x− xj
xi − xj

, x ∈ [a, b] (13)
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Let us now construct yet another interpolating polynomial p(x) by sampling f(x) at n interpo-
lation points such that n < N . We can estimate the difference between them, i.e., the interpolation
error E(x). Let Πn denote the space of polynomials of degree≤ n, and let Cn+1[a, b] denote the
space of functions that have n + 1 continuous derivatives on the interval [a, b]. Then from the
truncation error from the Taylor series, we have this theorem:

Theorem 1: Let f(x) ∈ Cn+1[a, b]. Let p(x) ∈ Πn such that it interpolates f(x) at the n + 1
distinct points x0, ..., xn ∈ [a, b]. Then ∀ x ∈ [a, b], ∃ ξ ∈ [a, b] such that

E(x) = f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)

n∏
j=0

(x− xj)

where ξ is an intermediate point between x0 and xn (Caporale and Cerrato, 2008).
If we are free to choose the interpolating points x0, ..., xn within this interval, then the product

n∏
j=0

(x−xj) can be minimized which in turn would minimize the interpolating error E(x). This can

be achieved by choosing interval as [−1, 1] and the interpolating points xj as the Chebyshev points
(Yang et. al , 2005). The following theorem gives an estimate of the error for the above case.

Theorem 2: Assume that p(x) interpolates f(x) at x0, x1, ..., xn. Also assume that these n+ 1
interpolation points are the (n + 1) roots of the Chebyshev polynomial of degree Tn+1(x), which
are given by Eq.(8). Then ∀ x ∈ [−1, 1],

|f(x)− p(x)| ≤ 1

2n(n+ 1)!
max
ξ≤1
|fn+1(ξ)||

Our goal is not to approximate a function p(x) on the interval [−1, 1], but to approximate the
values of the function p(x) corresponding to the discrete set of points given by Eq.(8). An arbitrary
function p(x) can be approximated in the interval [−1, 1] (Mason and Handscomb, 2002) by

p(x) =
n∑
k=0

ckTk(x), x ∈ [−1, 1] (14)

where the coefficients cj are defined as

c0 =
1

n+ 1

n+1∑
j=1

p(xj)

ck =
2

n+ 1

n+1∑
j=1

p(xj)Tk(xj), k = 1, ..., n (15)
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5. Proposed Method

The signal encounters various types of artifacts during acquisition, transmission and storage. The
noises introduced are due to power line interference (PLI), body movements, electrode contacts,
electromagnetic field interference, and respiration movements etc (Acharya et. al, 2007). Presence
of noises in ECG signals degrades the signal quality and thus affects the visual diagnosis and
feature extraction. Thus, noise removal becomes an essential part in ECG preprocessing for better
performance in ECG analysis and diagnosis.

Total variation denoising (TVD) is an approach for noise reduction and preservation of sharp
edges of signals. The total variation (TV) of a signal measures how much the signal changes between
signal values. Total variation denoising (TVD) is based on the principle that signals with excessive
and possibly spurious detail have high total variation. According to this principle, reducing the total
variation of the signal subject to it being a close match to the original signal, removes unwanted
detail whilst preserving important details such as edges. Unlike a conventional low-pass filter, TV
denoising is defined in terms of an optimization problem. Here we first apply the majorization-
minorization approach to optimize the total variation in the ECG signals (Yadav and Ray, 2015).

The purpose of the segmentation is to divide a signal to several segments with the same statistical
characteristics such as amplitude and frequency. A segmentation algorithm has a global perspective
that it produces the best Piecewise Linear Representation (PLR) of data with the least amount
of error (Keogh et. al, 2001). Since statistical characteristic of ECG changes with time, so ECG
signals are considered as non-stationary signals. Analysis of stationary signal is easier as compared
to non- stationary signal so signal segmentation is applied as a pre-processing step for non-stationary
signal analysis. Hence, we apply the The Bottom Up algorithm, also called as iterative merge which
begins by dividing the original time series data of length n into a large number of segments and is
consequently merged into bigger segments until stopping criteria is met (Yadav and Ray, 2016).

Since we are processing one segment, our working domain is in the interval [a, b]. So, we first
transform the interpolation interval y ∈ [−1, 1] using

x =
(b− a)y + (a+ b)

2
(16)

This converts the interpolation problem for f(x) on [a, b] into interpolation problem for f(x) =
g(x(y)) in y ∈ [−1, 1]. The Chebyshev points in the interval y ∈ [−1, 1] are the roots of the
Chebyshev polynomial Tn(y), i.e.,

yj = cos

(
2j + 1

2n+ 1
π

)
, 0 ≤ j ≤ n

The corresponding n+ 1 interpolation points in the interval [a, b] using Eq.(16) are now

xj =
(b− a)yj + (a+ b)

2
, 0 ≤ j ≤ n (17)

The interpolation error now is given by

|f(x)− p(x)| ≤ 1

2n(n+ 1)!

∣∣∣∣b− a2

∣∣∣∣n+1

max
ξ∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣
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In our method we need to construct the function f(x) using Eq.(13) with all the N ECG samples
of one segment. Then we find the Chebyshev nodes and subsequently the interpolating polynomial
using these nodes. Next, we calculate the error and if the error is not within our tolerance, we
increase the order. Since an ECG signal sampled value may not be available at the Chebyshev
nodes, we derive this value by linear interpolation using adjacent ECG sampled values. We continue
doing these operations till our error criterion is met.

We apply the same technique to all the segments and model each of them independently using
Chebyshev interpolation method. We present here an algorithm to show the steps of our method.
Algorithm Chebyshev poly approx=Chebyshev poly approx (N, ε, f(x), p(x), [a, b])

Inputs: p(x), [a, b], ε = 10−3

Outputs: f(x)
BEGIN algorithm

1. Fix the order n of the Chebyshev approximation.

2. Transform the Chebyshev nodes on the domain [a, b] and find the zeros or the Chebyshev nodes
xj using Eq.(17)

3. Find the function value f(xj) by linear interpolation using the adjacent integral points around
xj

4. Construct interpolating polynomial f(x) using Eq.(13).

5. Calculate error E(x) = max |f(x)− p(x)|

6. If E > ε then n = n+ 1 and go to step 2

END algorithm

6. Implementation and Results

An ECG signal is not linear, rather more curvaceous consisting of waves of various shapes. For
testing the performance of our algorithm we conducted our tests in MATLAB environment. An
ECG signal of duration 10 seconds with 8274 samples is taken from MIT-BIH (Goldberger et. al,
2000) arrhythmia database. Each file is sampled at 720Hz sampling frequency with 11 bits per
sample of resolution. The denoised signal is obtained using the TVD approach. Since the ECG
signal is quasi-stationary, segmentation plays very important role. The segmented points must be
related with the diagonastical parameters, because they determine the diagonastical intervals and
the wave amplitudes of the ECG. Peter Kovacs (Kovacs, 2012) had divided the ECG signal into 12
segments. In order to keep the model as simple as possible, number of segments should be minimal.
So the number of segments has to be intelligently decided. Using Bottom Up approach we divide
the denoised ECG signal into 10 segments so that the significant points and waves remain preserved
at the time of approximation.
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Since the shape of ECG is variable within and across patients, so all the segments cannot be
approximated by a signal polynomial. Instead a number of polynomials are to be reconstructed
depending upon the shape of segments. The proposed algorithm is implemented and tested over
each segment of the ECG signal by choosing the order of polynomial in such a way so as to
reduce the MaxError. Figure 2 to Figure 4 show the 10 original ECG signal segments and their
approximated signals with their Chebyshev nodes marked as ’∗’. The original signal is shown in
’red’ and the reconstructed signal is shown in ’blue’. Figure 5 shows the complete original and
reconstructed signal.

Figure 2. Segments 1 to 4 of Original and Reconstructed signals.
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Figure 3. Segments 5 to 8 of Original and Reconstructed signals.

The performance of the Chebyshev approximation technique is measured in terms of CR,
RMSE, MaxError, PRD and PRDN . Table I shows the results obtained for individual segments.
The orders of the polynomials for each segment are chosen to retain the original shapes of the
reconstructed signals. Compression ratios for linear sections are higher and can be approximated
by third order Chebyshev polynomial with PRD approximately equal to 0.05. MaxError for
individual segments were also calculated and the highest is nearly 5.2 for segment number 6. ECG
compression techniques with less than 10 % approximation error are considered to be medically
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Figure 4. Segments 9 and 10 of Original and Reconstructed signals.

Table I. Performance metrics for all the segments.

Segment

Number Order n N CR RMSE MaxError PRD PRDN

1 3 197 65.67 1.5526 4.3348 0.0747 34.6824

2 3 65 21.67 1.2036 2.2892 0.0579 32.2823

3 3 19 06.33 0.9568 1.4826 0.0455 7.4977

4 4 55 14.75 2.7307 3.0925 0.1304 19.7871

5 3 151 50.33 1.3628 3.0040 0.0658 25.5228

6 5 171 34.20 1.7778 5.2056 0.0857 31.4943

7 3 21 7.00 1.4089 2.9302 0.0687 4.3420

8 3 23 7.67 0.9004 1.3611 0.0448 3.9164

9 5 167 33.40 1.8528 3.7423 0.0887 15.2980

10 3 140 46.67 2.3227 2.7732 0.1116 25.3066

Average - - 28.6683 1.6069 4.2298 0.0774 20.0130

accepted (Sandryhaila et. al, 2012). The maximum value of PRD is 0.13 for segment number 4 and
average PRD obtained is 0.0774 which is also acceptable for ECG compression.

Similar approximation technique was used in (Yadav and Ray, 2013), but it was used on a
simulated standard ECG signal with absolutely no noise, where one cycle of ECG signal was
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Figure 5. Original and Reconstructed ECG Signal with all its 10 segments.

segmented into seven sections on the basis of shape and duration of various waves of ECG. Hence,
we have kept it outside the purview of our comparison.

The values of performance metrics obtained by the proposed method are much less than those
shown in (Fira and Goras, 2008) with different ECG compression techniques, viz., Wavelet and
Huffman, JPEG2000, SPHIT and other traditional techniques for one cycle of ECG signal. The
mean value of CR obtained in (Fira and Goras, 2008) is 18.27 which is inferior than the average
CR of 28.67 obtained by the proposed method. In (Tchiotsop et. al, 2007) ECG signals were
approximated using Jacobi polynomials, where the highest compression achieved was 11. Hermite
functions (Sandryhaila et. al, 2012) were also used to compress QRS complex of ECG signals and the
average CR achieved was 11 with 25% approximation error. The results obtained by Sandryhailla et.
al. were better than the results obtained by other transformation techniques. In (Jokic et. al, 2011)
polynomial models of ECG signals were developed where the lowest and highest PRD observed
were 3.5 and 10.8 respectively. In (Zahhad et. al, 2010) Discrete Wavelet Transform was used to
compress ECG signals where the highest CR of 40 was achieved with PRD of 2.7, and lowest CR
was 3.4 with PRD of 0.2 for one dataset. Hence, we can claim the proposed technique is quite
suitable for ECG compression.

7. Conclusion

In this paper, a model is designed to compress ECG signals using Chebyshev polynomials. The signal
was taken from MIT-BIH database which was denoised using the TVD-MM approach. Bottom-Up
technique was then used to find the break points. The individual segments obtained were then
approximated using Chebyshev polynomials. From the results, it was observed that the order of
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Chebyshev polynomials depends upon the shape of various sections of ECG wave. Waves having
zero or constant slope can be approximated by lower order Chebyshev polynomials, whereas waves
having variable slopes require higher order Chebyshev polynomials. The approximated models are
evaluated in terms of CR, RMSE, MaxError, PRD and PRDN . It was observed that the results
obtained were superior than those reported in the existing literature. Also accuracy can be increased
by breaking the complete signal into more number of segments at the cost of CR.

References

Acharya, U. R., J. S. Suri, J. A. Spaan and S. M. Krishnan. Advances In Cardiac Signal Processing. New York:
Springer Berlin Heidelberg, 2007.

Bharadwaj, A. and U. Kamath. Techniques for accurate ECG signal processing. EE Times, 2011.
Birkhoff, G. and C. R. De Boor. Piecewise polynomial interpolation and approximation. Approximation of functions,

164–190, 1965.
Bjorck, A. and V. Pereyra. Solution of Vandermonde systems of equations. Mathematics of Computation, 24(112):893–

903, 1970.
Braunwald, E. Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia: W.B. Saunders Co., 1997.
Caporale, M. Guglielmo and M. Cerrato. Chebyshev polynomial approximation to approximate partial differential

equations. ,2008
Chan, W. C. C., C. J. Chyan and H. M. Srivastava. The Lagrange polynomials in several variables. Integral Transforms

and Special Functions, 12(2):139–148, 2001.
Clifford, G., L. Tarassenko and N. Townsend. One-pass training of optimal architecture auto-associative neural

network for detecting ectopic beats. Electronic Letters, 37(18):1126–1127, 2001.
Colomer, A. and A. Colomer. Adaptive ECG data compression using Discrete Legendre Transform. Digital Signal

Processing , 7(4):222-228, 1997.
Elascoa, M., B. Wengb and K. Barnerc. ECG signal denoising and baselinewander correction based on the empirical

mode decomposition. Computers in Biology and Medicine , 38(2008):1–13, 2007.
Fira, C. M. and L. Goras. An ECG Signals Compression Method and Its Validation Using NNs. IEEE Transactions

on Biomedical Engineering, 55(4):1319–1326, 2008.
Gil, A., J. Segura and N. Temme. Chebyshev Expansions:Numerical Methods for Special Functions Society for

Industrial and Applied Mathematics , 51–86, 2007
Goldberger, A. L., L. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov and R. Mark. PhysioBank and PhysioToolkit.

PhysioNet: Components of a New Research Resource for Complex Physiologic Signals, e215-220, 2000.
Hadjileontiadis, L. J. Biosignals and Compression Standards M.Health Springer US ,277–292, ISBN: 978-953-307-

185-5, 2006.
Jalaleddine, S. M. S., C. G. Hutches, R. D. Strattan and W. A. Cobberly. ECG data compression techniques A

unified approach. IEEE Transactions on Biomedical Engineering, 37(4):293–343, 1990.
Jokic, S., V. Delic, Z. Peric, S. Krco and D. Sakac. Efficient ECG Modeling using Polynomial Functions.. Signal

Technology:Electronics and Electrical Engineering, 4(110):121–124, 2011.
Karczewicz, M. and M. Gabbouj. ECG data compression by Spline approximation. Signal Processing , 59(1):43–59,

1997.
Kehagias, A., E. Nidelkou and V. Petridis. A dynamic programming segmentation procedure for hydrological and

environmental time series. Stochastic Environmental Research and Risk Assessment, 20(1-2):77–94, 2006.
Keogh, E., S. Chu, D. Hart and M. Pazzani. An Online Algorithm for Segmenting Time Series:Data Mining. In

Proceedings ICDM,IEEE, :289–296, 2001.
Kovacs, P. ECG Signal generator based on Geometrical features. Annales Univ. Sci. Budapest., Sect. Comp.,

37(2012):247–260, 2012.
Krimt, H. and H. D. Brooks. Feature -Based Segmentation of ECG Signals. LIDS , 2329,1996. IEEE Trans. on

Biomedical Engineering, 47(7):849–856, 2000.

REC 2016 - S. Ray and O. P. Yadav

347



S. Ray and O. P. Yadav

Mason, J. C. and D. C. Handscomb. Chebyshev polynomials ,CRC Press, 2002.
Moody, G. B. and R. G. Mark. QRS Morphology Representation and Noise Estimation using the Karhunen-Loeve

Transform. Computers in Cardiology, pages 269–272, 1989.
Moody, G. B. and G. M. Roger. The MIT-BIH arrhythmia database on CD-ROM and software for use with it .

Computers in Cardiology, 185–188, 1990.
Nygaard, R., D. Haughland and J. Husy. Signal compression by second order polynomials and piecewise non inter-

polating approximation. Department of Electrical and Computing Engineering, 2557 Ullandhang 4091 Stavanger,
Norway, August, 1999.

Pan, J. and W. J. Tompkins. A Real-Time QRS Detection Algorithm. IEEE Tansactions on Biomedical Engineering,
230–233, 1985.

Philips, W. ECG data compression with time -warped polynomials. IEEE Trans on Biomedical Engineering,
40(11):1095–1101, 1993.

Rudin, L., S. Osher and E. Fatemi. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D, 60:259–
268, 1992.

Sandryhaila, A., S. Saba, M. Puschel and J. Kovacevic. Efficient Compression of QRS Complexes Using Hermite
Expansion. IEEE Transactions on Signal Processing, 60(2):947–955, 2012.

Selesnick, I. Sparse Deconvolution (an MM algorithm ), 2012.
Sorensen, J., J. Johannesen, U. Grove, K. Lundhus, J. P. Couderc and C. Graff. A Comparison of IIR and Wavelet

Filtering for Noise Reduction of the ECG. Computing in cardiology , 37 :489–492, 2010.
Sormno, L. and P. Laguna. Electrocardiogram (ECG) Signal Processing Wiley Encyclopedia of Biomedical

Engineering, 2006.
Spiegel, S., J. Gaebler, A. Lommatzsch, E. De Luca and S. Albayrak. Pattern Recognition And Classification For

Multivariate Time Series. In Proceedings of the fifth international workshop on knowledge discovery from sensor
data: ACM, 34–42, 2011.

Staudachera, M., S. Telserb, A. Amannc, H. Hinterhuberb and M. Ritsch-Marte. A new method for change-point
detection developed for on-line analysis of the heart beat variability during sleep. Physica A, 349:586–592, 2005.

Szego, G. Orthogonal polynomials. American Mathematical Society, 23:38–57, 1975.
Tchiotsop, D., D. Wolf, V. Louisdorr and R. Husson. ECG data compression using Jacobi polynomials. IEEE

Engineering in Medicine and Biology Society ,(29):1863–1867, 2007.
Walraven, G. Basic Arrhythmias (7th Edition edition.), 2011.
Yadav, O. P. and S. Ray. Total Variational Denoising of ECG Signals using Majorization-Minorization Technique.

Indian Control Conference. IIT Madras Chennai, January, 2015.
Yadav, O. P. and S. Ray. Smoothening and Segmentation of ECG signals Using Total Variational Denoising

Minimization-Majorization and Bottom-Up Approach. International Conference on Computational Modeling and
Security (CMS 2016),RLJIT, Bangalore, February, 2016.

Yadav,O. P. and S. Ray. Modeling and Segmentation of ECG signals through Chebyshev polynomials. International
Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(10), 2013.

Yang,W. Y., T.- S. Chung and J. Morris. Applied Numerical Methods Using Matlab. A JOHN WILEY and SONS,
INC., Publications,Hoboken, New Jersey, 2005.

Zahhad, M. A. ECG Signal Compression Using Discrete Wavelet Transform Discrete Wavelet Transform : Theory
and applications,143–168, ISBN: 978-953-307-185-5, 2011.

Zahhad, M. A., S. M. Ahmed and A. Zakaria. An ECG Signal Compression Technique Based on Discrete Wavelet
Transform and QRS-Complex Estimation. Signal Processing :An International Journal (SPIJ), 4(2):138–160,
2010.

Zifan, A., S. Saberi, M. H. Moradi and F. Towhidkhah. Automated ECG Segmentation Using Piecewise Derivative
Time Warping. International Journal of Biological and Medical Sciences, 1(3):181–185, 2006.

REC 2016 - S. Ray and O. P. Yadav

348




